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A theoretical study of the phase diagram of ionomer solutions in water is presented. These systems 
show two phase transitions: a demixing transition and a gelation. The demixing transition is studied 
using Flory's theory of polymer solutions. The gelation concentration always scales as the overlap 
concentration c*; the dependence of the phase boundaries on temperature and on the fraction f of 
metallic groups along the chain is studied. At high temperatures, in a good solvent regime, Cgel is pro- 
portional to f-8/5; at lower temperatures Cgel is proportional to f - l .  

INTRODUCTION 

In the last few years, due to their increasing importance in 
industry, new techniques have been developed to synthesize 
robbers. Some rubbers are now prepared by making a gel in 
solution and then expelling the solvent from the gel. The gel 
is usually constructed by making crosslinks between polymer 
chains. The crosslinking can be chemical as usual in gels, 
but it can also be physical ~ 3. The ionomer gels are a good 
example of  the physically-crosslinked systems 4-7. 

lonomers are copolymers 8-1~ where one constitutent is 
an organic monomer such as polystyrene and the other con- 
stituent is the same organic molecule carrying a metallic 
group (usually a sulphonate or carboxylate group) such as: 

SO 3 Na + 

Tile fraction f and the distribution of the metallic groups 
along the chains may be chemically controlled. 

When such polymer chains are diluted in a polar solvent, 
there is a dissociation of  the polar group, and the chain is a 
polyelectrolyte carrying an average charge -re per monomer. 
The physical properties of  polyelectrolytes have been ex- 
tensively studied (see ref 12 and refs therein); the effective 
interaction between monomers is a repulsive Coulomb force 
and the chains are almost completely stretched. 

However, if ionomer chains are diluted in a non-polar 
solvent such as benzene (the dielectric constant of  which is 
e ~ 1) or if they are in a molten or solid phase, the metallic 
groups are not dissociated, and the polar groups are electric 
dipoles. The resulting physics is then completely different 
because of  the attractive nature of  the dipole-dipole inter- 
action. Because of  this attractive interaction, the dipoles 
have been experimentally recognized to make small clusters. 
In a solid or molten phase, clusters up to 150 dipoles have 
been observed H. In a non-polar solvent this association 
between dipoles serves as a crosslink which may lead to 
gelation 8. In this paper, we are concerned with the condi- 
tions for the formation of  this gel as functions of  tempera- 
ture and concentration. 

The phase diagram of these ionomer solutions does not 
only involve gel formation. At sufficiently low tempera- 
tures the second virial coefficient between two chains may 
be negative. At low temperatures the solution then has a 
tendency to separate into two phases: one mostly composed 
of  polymer, the other mostly of  solvent. This demixing 
phase transition is similar to the Flory segregation of  poly- 
mers in poor solvents 13'14. There is a competition between 
the segregation and the gelation process. The order para- 
meter for the segregation is the concentration, c, of  mono- 
mers. The important property for gelation is the connectivity; 
two chains are connected if there is a physical link between 
them, i.e. if two dipoles, one from each chain, are bound 
together. A cluster is not associated with a concentration 
inhomogeneity; the concentration may be uniform and yet 
with existing clusters. The solution forms a gel when there 
is an infinite cluster. The formation of  a gel can be detected 
by mechanical experiments; e.g. the bulk viscosity of the 
solution diverges at the gelation threshold. The physical gel 
has also to be distinguished from the network formed by 
entanglements when different chains begin to overlap (in 
the semidilute region'S). There is another important diffe- 
rence between segregation and gelation: the gelation transi- 
tion is not a thermodynamic transition and cannot be des- 
cribed by a free energy; it is rather related to percolation 2°. 
In the specific case of  ionomers, the crosslinks are physical 
and can be destroyed by increasing the temperature, leading 
to a reversible gelation. 

The section below is devoted to the process of  association 
between dipoles, the two following sections study indepen- 
dently segregation and gelation, and in the last section, we 
attempt to describe the competition and the interferences 
between these two phase transitions. 

INTERACTIONS BETWEEN DIPOLES: ASSOCIATION 
PHENOMENA 

In solution in a non-polar solvent, the metal groups distri- 
buted along the ionomer chains interact with one another 
via a dipolar interaction and have a tendency to make clusters 
of  two or more dipoles. This cluster formation is the electric 
analogue of  the association of  magnetic colloidal grains 
studied by de Gennes and Pincus ~6 and Jordan 17. 

Two monomers carrying dipoles P-*I and p-~ have an energy 

0032--3861/80/010071 --06502.00 
© 1980 IPC Business Press POLYMER, 1980, Vol 21, January 71 



Gel formation in ionomers: Jean Francois Joanny 

of interaction u 12 depending on their distance apart, r: 

1 3 
U12 = 41rer-- ~ [P l 'P2  r~(P l ' r ) (p2" r ) ]  (1) 

In order to characterize this interaction, it is useful to 
introduce a dimensionless coupling constant X. I ra  is the 
size of a monomer and p the value of  the dipole moment*: 

p2 
X - (2) 

4~rea 3 T 

When X is large, the most probable configuration for the 
dipoles is to be parallel to F and the attraction is much larger 
than the thermal agitation. This can lead to an association 
between dipoles. If X is small the thermal agitation domi- 
nates and there is no association. At room temperature, for 
usual atomic dipoles (in a non-polar solvent e ~ 1) X ~ 1 0 -  
100 and we are thus in the strong coupling limit. 

Even in extremely dilute solution there are some contacts 
between dipoles; two dipoles are in contact if their distance 
is smaller than a few a. For simplification we shall assume 
that when two dipoles are in contact, there are only two 
possibilities; either they stick and form a dimer or they re- 
main free and move independently. The energy gain u when 
two dipoles stick together is given y equation (1) with r 
equal to a few a: 

u = - T a X  (3) 

where ct is a constant of  order unity. 
The probability Pl  for any two dipoles in contact to form 

a dimer is then: 

e - . / r  

P l -  1 +e ~ F(u /T)  (4) 

The first factor is just a Boltzman law, the second factor 
[F(u/T)] is the probability that there is actually a bound 
state between the molecules (e.g. ref 27). The function 
F(u/T) is given by: 

f - 1"(3/2) (5) 

where P(n,x) is the incomplete P function. At zero tempera- 
ture PI  is equal to 1 ; when the temperature becomes very 
large Pl behaves like (u/T)  3/2 and goes to zero. The proba- 
bility for two monomers to form a dimer is then: 

P2 = f2p  l (6) 

As we are dealing with dilute solutions, the probability of 
contact between more than two dipoles is extemely low, 
and we may neglect the formation of  oligomers of  more 
than two dipoles. 

Another important parameter to characterize the dipolar 
interaction is the second virial coefficient which governs the 
segregation process. This virial coefficient has been calcu- 
lated by Jordan17: 

e2h 
A 2 = - ~ a 3 ~  ( X > l )  (7) 

9~ a 

* We choose a temperature unit where the Boltzmannconstant is 1. 

The second virial coefficient is negative (attractive force) 
and an increasing function of  temperature. The attractive 
forces between dipoles also have an important effect on the 
configurational properties of  isolated ionomer chains and 
many lead to a collapse. The Flory free energy for an 
isolated ionomer chain of N monomers and radius R is13: 

F 3 R2 1 2 N2 1 N 3 
- + + - w 2 - -  ( 8 )  

T 2 Na 2 2 ( v + f ' A 2 ) - ~  6 R 6 

where v is the excluded volume parameter and W 2 ~ a 6, the 
third virial coefficient between monomers. A collapse thus 
occurs when*: 

NI/2  
(o+f2A2) - -~ - -  < - 1  (9) 

a ~ 

We will assume that tile fraction of  dipoles is small enough 
to avoid a collapse at high temperatures. If the number of  
dipoles is too large, the polymer and tile solvent would be 
incompatible because of the hydrophilic nature of  the ionic 
groups 8. 

PHASE SEPARATION - SEGREGATION 

At low temperatures, the second viriat coefficient between 
chains is negative and leads to a separation of the solution 
into two phases 13'~4. However, ionomers are copolymers 
and one cannot exclude a microphase separation with forma- 
tion of regions containing only dipoles and regions contain- 
ing no dipoles. If  the ionic groups are at the ends of  the 
chain, one can, for instance, imagine the formation of  
micelles, A very powerful theoretical tool for the study of  
both segregation and microphase separation has turned out 
to be linear response theory 14'18. In the following, for sim- 
plicity, we restrict ourselves to the study of  ionomers with 
dipoles distributed at random along the chain; in this parti- 
cular case we shall see that there is no microdomain 
formation. 

Let us consider the solution at a thermodynamic equili- 
brium with a monomer concentration c. On each chain we 
label each monomer by a number i starting from one end. 
We introduce the concentration ci of monomers labelled by 

N 

i ~ c i=c  

i = 1 

We also define a variable ui on each monomer which is 1 if 
the monomer carries a metallic group and 0 otherwise. If  
the metallic groups are distributed randomly, the mean value 
(ui) averaged over all the chains is f, and u i and u/(i--/=j) are 
independent variables: 

(ui> = f 

(u i ul ) = (Ui)(uj) = f2 ( 1 O) 

We now displace the equilibrium by introducing a small 
fictitious potential 6~ acting on all the monomers. This 
potential induces a change 8ci in the equilibrium concentra- 

* For Gaussian chains (R = N 1/2a) the attractive interaction given 
by the second term of equation (8) is greater than T. 
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tions and a restoring potential 8~bi, in t on all the monomers. 
In momentum space, the concentration shift 8el(q) for a 

given momentum q is proportional to the total potential 
acting on the monomers: 

6ci(q) = ~ xq(q)[8~b(q) + 8~b/,int (q) ] 

J 

(11) 

×q is the linear response between monomers i and j for an 
ideal isolated chain: 

= - - -  e x p -  li j l  (12) Xi/ TN 

In the restoring potential 8~b!,int there are two contribu- 
tions, one coming from the excluded volume interactions 
acting on all monomers and one coming from the dipolar 
interaction. If  we write the Flory excluded voltme free 
energy in the usual way: 

F 1 lw2c3 - 0c2 + -- (13) 
T 2 6 

(o is the excluded volume parameter, an increasing function 
of  temperature vanishing at a temperature 0, w 2 the third 
virial coefficient roughly independent of temperature) the 
contribution to ~5@j.in t is: 

(o + w2c) ~5c 

8c = ~ aci (14) 

i 

Tile dipolar contribution to the internal potential 8qSj, in t is: 

u I ~ UkSCkg(q ) (15) 

k 

g(q) is the direct pair correlation function for the dipolar 
potential equation (1): 

g(q)= f d37ei-q7 [1 -e  I u12(r)/T]] (16) 

It has been calculated by De Gennes and Pincus ~6 and can be 
approximated after averaging over dipolar orientations by: 

g(q) = A2[1 - b(q2a2)] (17) 

where b is a number of  order unity. Introducing equations 
(14) and (15) into equation (11), and averaging over the 
chain configurations, we obtain the RPA equations: 

8ci(q) = ~ Xi] [8~b(q) + (v+ w2c) Be(q) 
/ 
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+ ~ (U/Uk)SCk(q)g(q)] (18) 

k 

If  we introduce the linear response function × of  the 
solution: 

6c = X6O (19) 

equation (18) yields: 

-1 
× = ( 2 0 )  

1 
(O + W2C) + f2g(q) + _ _  

xo(q) 

where we have introduced the notation 

×o = - 2 . ,  ×q 
q 

which is the response function of an ideal chain first calcu- 
lated by Debye: 

xo(x)  = 1 + x r -  (21) 

Nq2a 2 

6 

g(q) and l/X0 are increasing functions ofq.  The response 
function × is thus maximum for q = 0. There are no diver- 
gences of  × for non-zero q vector which would be charac- 
teristic of  a microdomain formation. Thus there is no micro- 
domain formation as previously suggested 18. 

The divergence of  × at 0 wavevector indicates a separa- 
tion of  the solution into two phases, the curve of the plane 
c T where × shows a divergence being the spinodal line of  
this phase separation. Its equation is: 

1 
(u+f2A2) +- -  +w2c = 0 (22) 

Nc 

This equation for the spinodal curve could be derived from 
a usual Flory free energy: 

F c 1 1 
- logc + - ' ~ c  2 + -w2c 3 (23) 

T N 2 6 

where ~' would be a renormalized excluded volume para- 
meter taking into account the dipolar interaction: g = ~ + 
f2A 2. The only effect of  the dipolar interaction, when the 
dipoles are distributed at random is thus to renormalize the 
excluded volume parameter. 

GEL FORMATION AT HIGH TEMPERATURE 

We turn now to the higher temperature region where the 
interactions between different chains are not important but 
where the interaction between two single dipoles carrying 
metallic groups is large enough to allow the formation of  
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two or more monomers. This aggregation, which is not a 
thermodynamic process leads to the formation of a gel. 

The first theory of  gels proposed by Flory ~9, discusses 
in a mean field approximation the formation of  infinite 
polymer trees, completely ignoring the formation of  loops. 
More recently the sol-gel transition has been related to the 
critical properties of the percolation theory 2°'2~. This model 
has recently been improved by Coniglio and coworkers who 
proposed a si te-bond percolation theory of gelation. 

Our approach, which is more phenomenological, starts 
from the usual continuum model for semi-dilute solutions. 
We show subsequently that this model can be described in 
terms of  si te-bond percolation with an approximate lattice. 

We thus start from an ionomer solution above the 0 point 
(to avoid segregation, we need ~ > 0). At a concentration c 
below the overlap concentration c*, the number of  contacts 
between monomers of different chains is very small, and 
there is no formation of  clusters. The gelation transition 
thus occurs in the so-called semi-dilute regime. In this 
regime, the chains overlap and form a network where the 
knots are not links but entanglements. A very simple des- 
cription of  this network can be made in terms of  blobs 24. 
The solution behaves like a melt of  subunits of  size ~ called 
blobs; inside each blob (on a length scale smaller than ~) we 
see a single chain behaviour (excluded volume or Gaussian, 
depending on temperature); at larger length scales we see a 
melt behaviour where the chains are essentially ideal. If 
each blob contains g monomers (g = N for c = c*), the num- 
ber of blobs per chain is: 

N 
n = - -  (n = 1 for c = c*) (24) 

g 

Each blob is in contact with one or a few other blobs of  
other chains. The total number of  contacts between one 
fixed chain and all the others is proportional to the number 
of  blobs per chain, n. 

Let us now consider two particular chains in contact: they 
occupy a volume R d ( R  = n 1/2~, in a d-dimensional space). 
The concentration of  blobs of  one chain is: 

n 
c~ = ~-a (25) 

So each blob of  the other chain is in contact with c 1 ~d blobs 
of this chain, and the total number of  contacts between the 
two chains is: 

7 = n c l ~  cl = n 2 - d / 2  (26) 

The number of  chains in contact with a particular chain 
is: 

n 
z = - = n [  ( d / 2 ) -  1 ] (27) 

-/ 

Two chains in contact make a cluster if and only if at least 
one of  their ~, contacts is a physical link between two di- 
poles. The probability for two chains in contact to make a 
cluster is: 

p = 1 - (1 - p 2 ) ~  ( 2 8 )  

As in all the problems connected with bond percolation, we 

expect a gel formation when the total number of chains 
linked to a fixed one is of  order 1.5 in three dimensions 
(e.g. see ref 25). 

The gelation curve is thus given by: 

zp ~- 1.5 (29) 

To make equation (28) more explicit we can distinguish 
two limits. 

(a) If  P2 is close to one (all the contacts are links), the 
gelation threshold is z = 1 or using equation (27), c = c*. 
We recover a result first found by De Gennes 24. 

(b) If, as in the special case of  ionomers, P2 is much 
smaller than 1, equation (28) reduces to: 

1 
P2 = -- (30) 

n 

(In a melt g = 1, n = N and equation (30)  gives the well- 
known threshold for vulcanization 26 P2 = 1IN.) 

The gel concentration Cgel still scales like the overlap 
concentration c*. However, P2 being very small, the ratio 
Cgel/c*, although independent of  N, is much larger than 
one, and the gelation occurs in the semi-dilute r~gime. The 
gelation has nothing to do with concentration inhomo- 
geneities. It is just related to the nature of  the knots of  the 
semi-dilute solution pseudo-gel. When enough links are 
actual physical crosslinks, the pseudo-gel (network) be- 
comes a true gel. 

We can explicitly calculate Cgel from equation (30) for 
two cases. 

(i) For excluded volume blobs is the overlap concen- 
tration is c* ~ N-4 /5  and the correlation length is ~ 
c -3/4. Thus: 

n = ( 3 1 )  

and 

1 +e - u / T  F (32) 

(ii) For Gaussian blobs, c* ~ N-1 /2 ,  ~ ~ l /c  and Cgel is 
given by: 

Cgel = C* ~ F (33) 

At high temperature excluded volume effects should be im- 
portant; at lower temperatures, near the 0 temperature the 
chain should be Gaussian. Experimentally, the dependence 
of Cgel on fshould then change from a 1/flaw to a 1If  8/5 
law by increasing the temperature. 

The gelation line is not the only interesting quantity in 
the gel formation. Indeed, most physical quantities (e.g. 
size of  the clusters, viscosity of  the solution, etc.) have 
singular behavours at the gelation threshold. This beha- 
viour should be calculated in terms of  percolation critical 
exponents 2°'2~. However, the number of  chains which can 
be linked with one chain z is much larger than one (see 
equation 27 with n >> 1). If this quantity z (which is the 
equivalent of  the coordination number in a lattice model) 
is much larger than one, the mean field theory for percola- 
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Figure 1 Temperature concentrat ion phase diagram for ionomer 
solutions. T c is the critical temperature, c K the critical concentra- 
t ion and c o the point  where the gelation line and the coexistence 
curve meet 

tion gives correct results even close to the gelation threshold 26. 
(This property is well known for thermal phase transitions 
like superconductivity and means that if the number of  
interacting neighbours is big, the fluctuations are small. The 
critical properties of percolation can be mapped on the 
critical properties of  a Pott 's  model27.) Since the property 
which plays the role of  fluctuations in the percolation prob- 
lem is loop formation, this means that in the study of  the 
critical properties loops can be neglected and that the basic 
clusters are polymers trees. 

Let us now try to describe the formation of  the gel by a 
generalized lattice model. At each site of  the lattice, we put 
a polymer chain. The distance between two nearest neigh- 
bout chains is the radius R of  the chains. (The radius of  the 
chains varies with concentration, but this is not relevant for 
percolation properties.) In our description of  the gelation 
process, the number of  nearest neighbours of  one chain 
(number of  chains which can be linked to a given one) 
changes with the concentration. We can thus follow Stanley 
and introduce a lattice where the coordination number ~" is 
the maximum number of  nearest neighbours a chain can have, 

= N 1/2 (see equation 27 wi thg  = 1). As explained by 
Stanley the gelation is the result of  two percolation problems 
on this lattice: (A) a site percolation, (B) a bond percolation 
between nearest neighbour sites; this percolation being rele- 
vant if we are above the percolation threshold for the site 
percolation. In terms of polymer solutions the site percola- 
tion (A) describes just the formation of  the semi-dilute 
polymer solution. For site percolation, we know 2s that at 
the threshold, the fraction of  space occupied by the sites is 
of  order one. The site percolation threshold is thus c ~ c*. 
Above this threshold we have an infinite cluster (the semi- 
dilute network) and we can study the bond percolation 
problem (B) which we called connectivity before. The 
threshold given by ~p = 1 where ~" is the effective number of  
nearest neighbours in the infinite cluster (~" = z) and p the 
probability of  having a bond between two sites. 

PHASE DIAGRAM OF THE IONOMER SOLUTION 

In the two previous sections we have studied independently 
the two phase transitions of  the ionomer transition. We can 
summarize the results on a phase diagram. The demixing 
transition is characterized by a usual coexistence curve which 
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could be calculated from the free energy (equation 13). 
However, this coexistence curve is not very different from 
the spinodal line calculated in equation (12). 

The critical concentration is Ck ~ c*. In the limit of  in- 
finite temperatures the gelation line goes to infinity as 
Cgel/C* ~ (T/u)  6/5 (see equation 32). The two curves (gela- 
tion line and coexistence curve) meet at a certain concen- 
tration c = cot .  However, in the vicinity of c = c O the two 
transitions may not be treated independently. The objects 
of the segregation are no longer chains but clusters of  chains, 
and the fluctuations of  concentration due to the spinodal 
line may create regions where the concentration is large and 
favours the formation of clusters. We now give a qualitative 
argument tending to show that the two curves meet in the 
vicinity of  the critical point. 

(1) Suppose that co is smaller than CK. Before the segre- 
gation we have the formation of big clusters of  S chains. 
The Flory free energy for these chains is then: 

F _  c log c + !"~c 2 + 1 w 2 c 2  (34) 
T N S  2 6 

(It is the same as equation 13 except that the translational 
term (c /NS)  log c is reduced, because the clusters all include 
N S  monomers.) The critical concentration for the solution 
is now 1INS 1/2. This concentration goes to zero as the con- 
centration gets closer and closer to co (the number of  chains 
per cluster becomes infinite), and so segregation occurs be- 
fore we reach the concentration c 0. This implies CK < co. 

(2) Suppose c o is larger than c K and that the solution is 
at critical temperature T c. If  we start from zero concentra- 
tion and increase the concentration, when we approach the 
critical concentration CK, the fluctuations become important, 
we can have regions of  size ~T (the thermal correlation 
length, characteristic length of  thermal fluctuations) such 
that the concentration is above co. This leads to the forma- 
tion of clusters of  size ~T which become infinite at c = c K. 

If the two curves meet at the critical point, this point as 
noticed by Stanley is of  a very special type: there are two 
characteristic lengths, the thermal length ~T and the percola- 
tion length ~p = R (c - Cgel/Cgel) vp which is the correlation 
length of  pairs of  dipoles. These two lengths should become 
equal and diverge with a renormalized exponent which is 
neither the percolation exponent nor the Ising exponent of  
the thermal transition. 
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